Functions

1.2 Explore inverse functions (and compositions)

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Produce inverse functions (F.BF.4)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing	Read values of an inverse function from a graph and table Given a simple function, find its inverse Compose functions to verify if one function is the inverse of another function	 Can do 2 of the following: Read values of an inverse function from a graph and table Given a simple function, find its inverse Compose functions to verify if one function is the inverse of another function 	Can do 1 of the following: Read values of an inverse function from a graph and table Given a simple function, find its inverse Compose functions to verify if one function is the inverse of another function	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Evaluate composed functions (F.BF.1c)	CreatingProving	Evaluate the composition of 2 functions in context of a situation	Evaluate the <u>composition of</u> 2 functions	Evaluate a function for a given value and use that result to evaluate a second function	

F.BF.4 Find inverse functions.

- a. (+)Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2 \times 3$ or f(x) = (x+1)/(x-1) for $x \ne 1$.
- b. (+) Verify by composition that one function is the inverse of another.
- c. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse.
- F.BF.1c Write a function that describes a relationship between two quantities.
 - c. (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather balloon as a function of time.

Functions

1.3 Explore function transformations

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No
					Evidence
Identify	Can extend	Identify the effect on a	Identify the effect on a	Identify the effect on a	Little
transform-	thinking beyond	graph by replacing f(x) with	graph by replacing f(x) with	graph by replacing f(x) with	evidence
ations and	the standard,	more than two	two transformations:	a single transformation:	of
key	including tasks	transformations:	f(x) + k, $a f(x)$,	f(x) + k, $a f(x)$,	reasoning
features of	that may involve	f(x) + k, $a f(x)$,	f(bx), $f(x + h)$ for specific	f(bx), $f(x + h)$ for specific	or
graphs	one of the	f(bx), $f(x + h)$ for specific	positive and negative values	positive and negative values	application
(F.IF.7a/b,	following:	positive and negative values	of the constants a, b, h, and	of the constants a, b, h, and	to solve
F.BF.3)		of the constants a, b, h, and	k	k	the
	 Designing 	k			problem
	 Connecting 				
	 Synthesizing 	Write a function given more	Write a function given two	Write a function given <u>a</u>	Does not
	Applying	than two transformations.	transformations.	transformation.	meet the
	Justifying				criteria in
	Critiquing	Graph function	Graph function	Given the graphs of	a level 1
	Analyzing	transformations (quadratics,	transformations	functions (quadratics,	
	Creating	square root, cube root,	(quadratics, square root,	square root, cube root,	
	Proving	linear, absolute value) and	cube root, linear, absolute	linear, absolute value)	
	· ·	identify all related key	value) and identify all	identify all related key	
		features of a graph in	related key features of a	features of a graph.	
		context of a situation.	graph <u>.</u>	 lines of symmetry 	
		 lines of symmetry 	 lines of symmetry 	intercepts	
		intercepts	intercepts	domain/range	
		domain/range	domain/range		

F.IF.7a/b Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology.